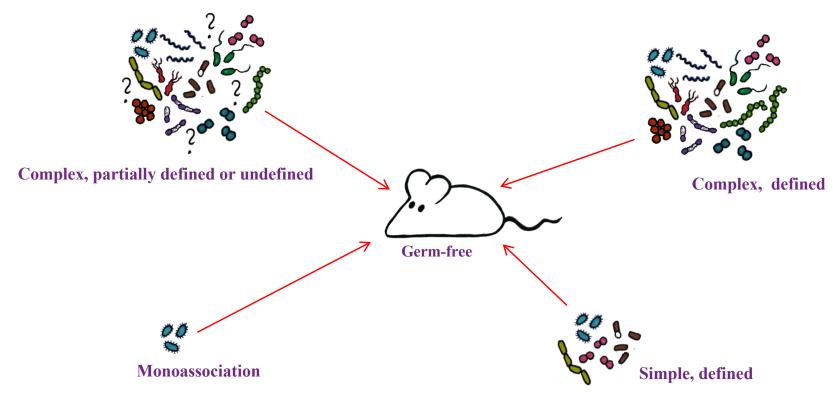

Mice as Translational Models: Planning a Fecal Microbiota Transplantation Study

RANDI LUNDBERG, DVM
APPLICATIONS SCIENTIST

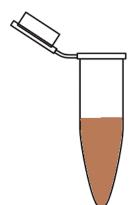
3rd Annual Translational Microbiome Conference
Boston, April 11-13, 2017

FMT – not so new after all

Earliest written report of FMT: Ge Hong (283-343 C.E.), China


 Used oral FMT for food poisoning and severe diarrhea with success

FMT in mice


- Effect of microbiome has been studied in germ-free mice since the late 1950's
- Was mostly monoassociations, simplistic defined consortia, conventionalization (typically by co-housing with conventional mice)

Illustrations © R. Lundberg 2015

FMT in mice - applications

Oral gavage with fecal slurry

http://www.procedureswithcare.org.uk/oral-gavage-in-the-mouse/

- Study host-microbiome interactions
- Phenotype transfer prove causative role of microbiome
- Generate mouse cohorts with a relevant microbiome (e.g. human) for drug testing
- Generate mice with disease-prone microbiota for induction or acceleration of the model

FMT in mice - procedures

- Topical origin of transplant
- Fresh vs. frozen transplant
- Cryopreservation or not
- Anaerobic handling
- Administration (route, single vs. repeated dose)
- Recipient (health status, age)
- Housing and husbandry

May all affect FMT

FMT in mice - procedures

- Topical origin of transplant
- Fresh vs. frozen transplant
- Cryopreservation or not
- Anaerobic handling
- Administration (route, single vs. repeated dose)
- Recipient (health status, age)
- Housing and husbandry

May all affect FMT

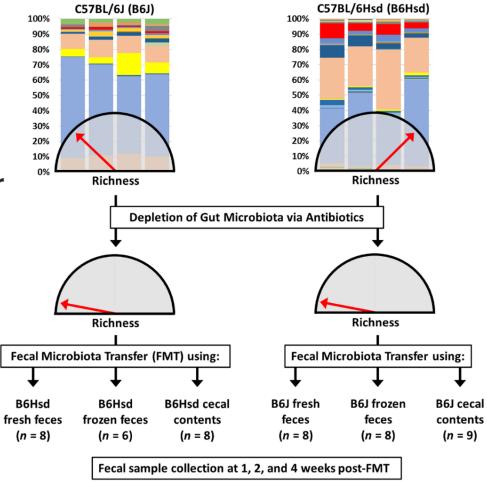
Recipient

Germ-free

Antibiotic-treated

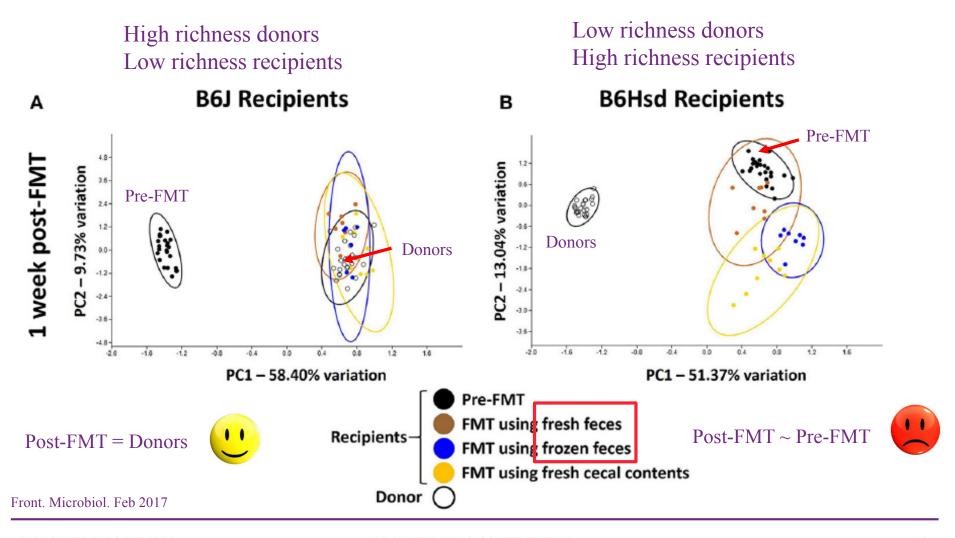
Ampicillin 1 g/L DW Vancomycin 0.5 g/L DW Neomycin 1 g/L DW Metronidazole 1 g/L DW

- Complete germ-free state not obtained (even after up to 3-4 weeks on antibiotics)
- Individual variation in surviving species, thus variation in baseline immunology
- Observed effect may happen through other pathways than the microbiota
- Usually mainly targets bacteria
- Not targeting microbiome outside the gut
- Risk of favoring bacteria with antibiotic resistance genes



FMT success inconsistent with antibiotics

Variable Colonization after Reciprocal Fecal Microbiota Transfer between Mice with Low and High Richness Microbiota


Aaron C. Ericsson^{1,2,3}, Alexa R. Personett³, Giedre Turner^{2,3}, Rebecca A. Dorfmeyer^{2,3} and Craig L. Franklin^{1,2,3*}

Front. Microbiol. Feb 2017

FMT success inconsistent with antibiotics

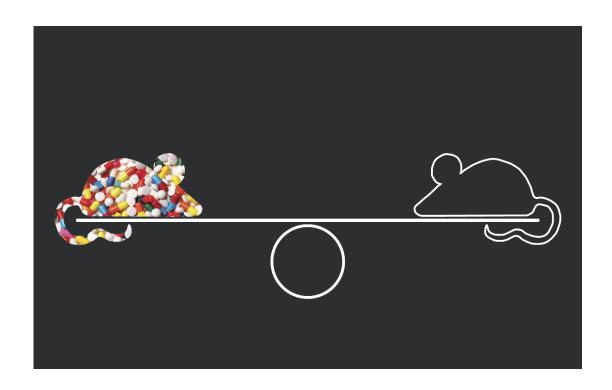
Direct effect of antibiotics on host tissue

- Ampicillin/neomycin/vancomycin/metronidazole-cocktail
- Performed gene expression microarrays
- Detected toxic effect in antibiotic-treated germ-free mice
 - Suppression of mitochondrial function
 - Suppression of gene expression related to ribosomes
 - Death of intestinal epithelium

Uncovering effects of antibiotics on the host and microbiota using transkingdom gene networks

Andrey Morgun, ^{1,7} Amiran Dzutsev, ² Xiaoxi Dong, ¹ Renee L Greer, ³ D Joseph Sexton, ⁴ Jacques Ravel, ⁵ Martin Schuster, ⁴ William Hsiao, ⁶ Polly Matzinger, ⁷ Natalia Shulzhenko ^{3,7} Gut, Nov 2015

47 page table with information on

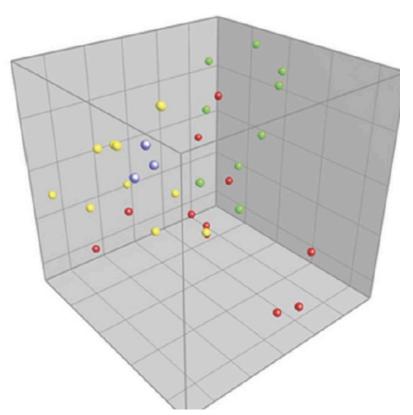

- Genes affected by the antibiotic cocktail
- Why they change (microbiota effect, direct effect, effect of surviving species)
- In which tissue the changes occur

		Entrez gene			fold change	p-value	assignment: M=normal microbiota; ABx=direct effect of antibiotics;	
Description	Clone	ID	UG cluster	Gene symbol	Control/ABx	control/Abx	ABresM=antibiotics resistant microbiota	predominant expression
, , , , , , , , , , , , , , , , , , ,	NM_009117	20208	Mm.148800	Saa1	28.805	0.0000021	M+ABx	Epith
fibroblast growth factor 15 (Fgf15), mRNA.	NM_008003	14170	Mm.3904	Fgf15	15.763	0.0005486	M	
hematopoietic cell transcript 1 (Hemt1), m	NM_010416	15202	Mm.17336	Hemt1	11.072	0.0000051	M+ABx	Epith
serum amyloid A 2 (Saa2), mRNA.	NM_011314	20209	Mm.200941	Saa2	9.758	0.0004239	M	Epith
mannose binding lectin (C) (Mbl2), mRNA.	NM_010776	17195	Mm.30045	Mbl2	9.534	0.0000283	M	
granzyme B (Gzmb), mRNA.	NM_013542	14939	Mm.14874	Gzmb	8.549	0.0000001	M	Epith
granzyme A (Gzma), mRNA.	NM_010370	14938	Mm.15510	Gzma	8.065	0.0000001	M	Epith~LP>Crypt
chemokine (C-C motif) ligand 5 (Ccl5), mRN	NM_013653	20304	Mm.284248	Ccl5	7.642	0.000001	M	Epith~LP>Crypt
ubiquitin D (Ubd), mRNA.	NM_023137	24108	Mm.140210	Ubd	7.588	0.0000001	M	Epith~LP>Crypt
dual oxidase maturation factor 2 (Duoxa2),	NM_025777	66811	Mm.171333	Duoxa2	7.506	0.0000001	M+ABx	Epith

Uncovering effects of antibiotics on the host and microbiota using transkingdom gene networks

Andrey Morgun, ^{1,7} Amiran Dzutsev, ² Xiaoxi Dong, ¹ Renee L Greer, ³ D Joseph Sexton, ⁴ Jacques Ravel, ⁵ Martin Schuster, ⁴ William Hsiao, ⁶ Polly Matzinger, ⁷ Natalia Shulzhenko ^{3,7} Gut, Nov 2015

Gut Microbes, Jan 2016

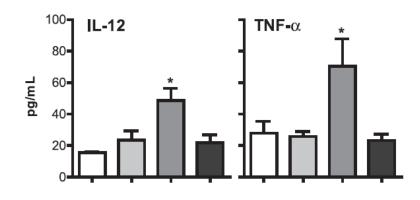

Antibiotic-treated versus germ-free rodents for microbiota transplantation studies

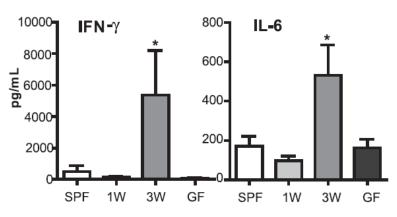
Randi Lundberg^{a,b}, Martin F. Toft^{b,†}, Benjamin August^{b,‡}, Axel K. Hansen^a, and Camilla H. F. Hansen^a

^aSection of Experimental Animal Models, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark; ^bInternal Research and Development, Taconic Biosciences, Lille Skensved, Denmark

Does age affect FMT?

- FMT performed in 1 week (red balls) and 3 week (yellow balls) old mice
- Closest microbiota resemblance to donor (blue balls) when FMT done at 3 weeks

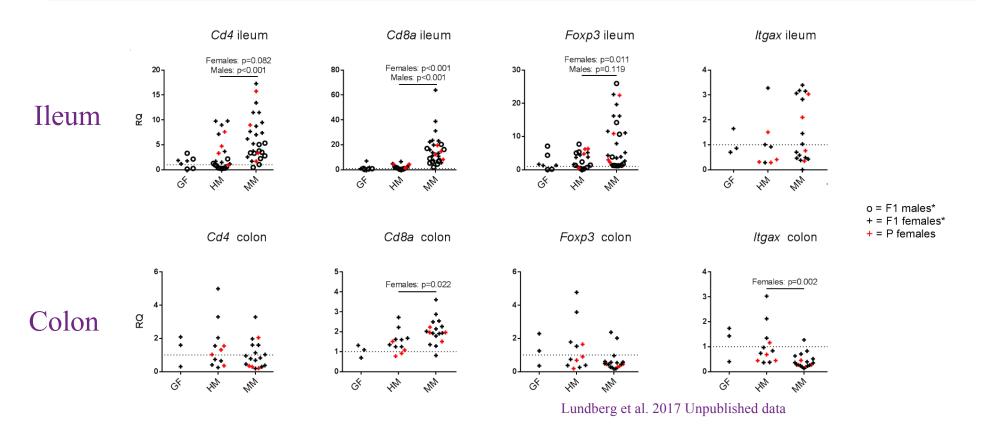

Patterns of Early Gut Colonization Shape Future Immune Responses of the Host PLOS ONE, Mar 2012


Camilla Hartmann Friis Hansen^{1*}, Dennis Sandris Nielsen², Miloslav Kverka³, Zuzana Zakostelska³, Klara Klimesova³, Tomas Hudcovic³, Helena Tlaskalova-Hogenova³, Axel Kornerup Hansen¹

1 Department of Veterinary Disease Biology, Faculty of Life Sciences, University of Copenhagen, Frederiksberg C, Denmark, 2 Department of Food Science, Faculty of Life Sciences, University of Copenhagen, Frederiksberg C, Denmark, 3 Department of Immunology and Gnotobiology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague and Novy Hradek, Czech Republic

Does age affect FMT?

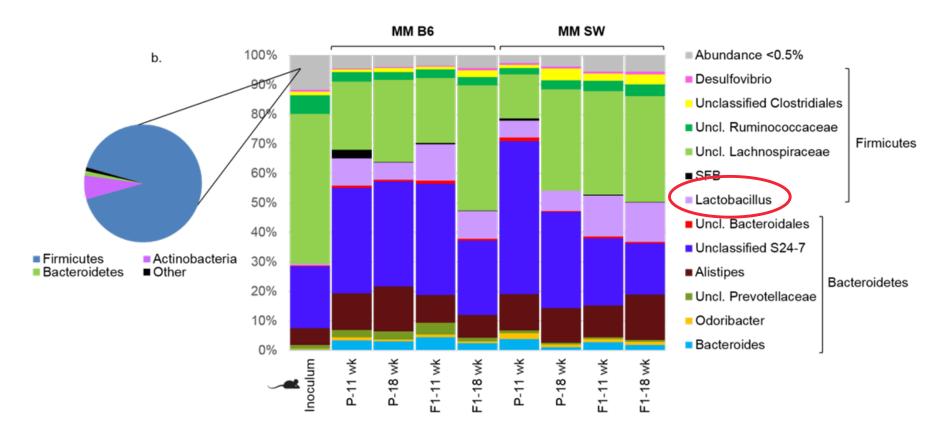
- FMT performed in 1 week (red balls) and 3 week (yellow balls) old mice
- Closest microbiota resemblance to donor (blue balls) when FMT done at 3 weeks
- FMT at 3 weeks → proinflammatory phenotype later in life (9 weeks of age)


Patterns of Early Gut Colonization Shape Future Immune Responses of the Host PLOS ONE, Mar 2012

Camilla Hartmann Friis Hansen^{1*}, Dennis Sandris Nielsen², Miloslav Kverka³, Zuzana Zakostelska³, Klara Klimesova³, Tomas Hudcovic³, Helena Tlaskalova-Hogenova³, Axel Kornerup Hansen¹

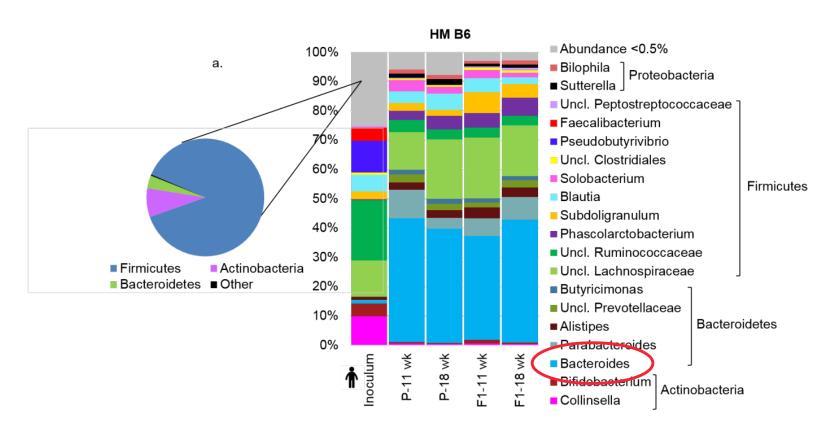
1 Department of Veterinary Disease Biology, Faculty of Life Sciences, University of Copenhagen, Frederiksberg C, Denmark, 2 Department of Food Science, Faculty of Life Sciences, University of Copenhagen, Frederiksberg C, Denmark, 3 Department of Immunology and Gnotobiology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague and Novy Hradek, Czech Republic

Does age affect FMT?



 No difference in immunological phenotype at 18 weeks of age between colonized mice and their offspring born with the microbiota

Inoculation effect

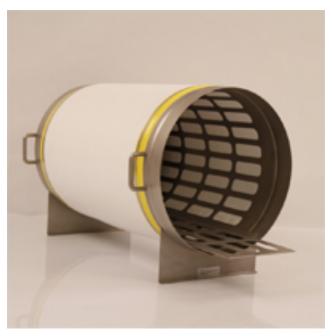


Lundberg et al. 2017 Unpublished data

Inoculation effect

Lundberg et al. 2017 Unpublished data

Housing



Isolator Housing

http://www.cbclean.com/isolator_starter_system.html

http://hooperlab.org/gnotobiotics/index.html

IVCs for gnotobiotic mice

- ISOCAGE P: Airtight cages with high positive pressure
- Weekly cage changes: Surgical approach
- Germ-free for at least 12 weeks

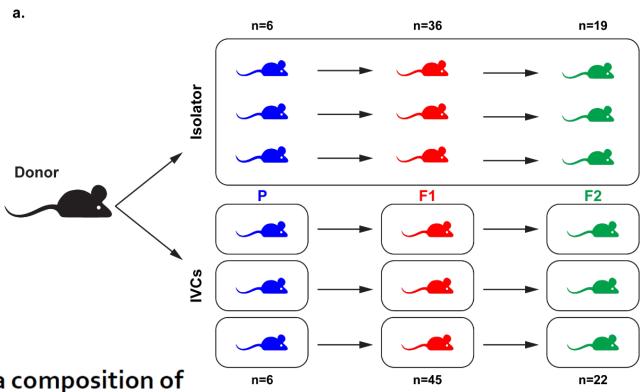
Potential for using a hermetically-sealed, positive-pressured isocage system for studies involving germ-free mice outside a flexible-film

isolator Gut Microbes, July/Aug 2015

Jisun Paik^{1,*}, Olesya Pershutkina¹, Stacey Meeker¹, Jaehun J Yi¹, Susan Dowling¹, Charlie Hsu¹, Adeline M Hajjar¹, Lillian Maggio-Price¹, and David A C Beck^{2,3}

© TACONIC BIOSCIENCES 21

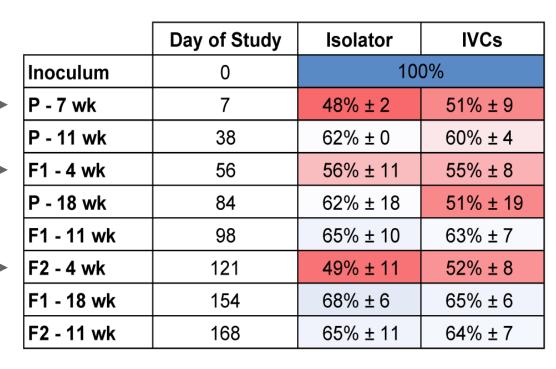
IVCs for gnotobiotic mice

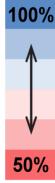

- ISOCAGE P: Airtight cages with high positive pressure
- Weekly cage changes: Surgical approach
- Germ-free for at least 12 weeks

Potential for using a hermetically-sealed, positive-pressured isocage system for studies involving germ-free mice outside a flexible-film

isolator Gut Microbes, July/Aug 2015

Jisun Paik^{1,*}, Olesya Pershutkina¹, Stacey Meeker¹, Jaehun J Yi¹, Susan Dowling¹, Charlie Hsu¹, Adeline M Hajjar¹, Lillian Maggio-Price¹, and David A C Beck^{2,3}

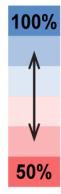

Microbiota composition of n=6 simultaneously colonized mice housed under either a gnotobiotic isolator or individually ventilated cage regime Sci Rep, Feb 2017


Randi Lundberg^{1,2}, Martin I. Bahl³, Tine R. Licht³, Martin F. Toft^{2,†} & Axel K. Hansen¹

- Weekly cage changes in biosafety cabinet
- Breeding two offspring generations
- 5 months timeline

Lowest resemblance with donor 1 week post-colonization and in offspring generations around weaning

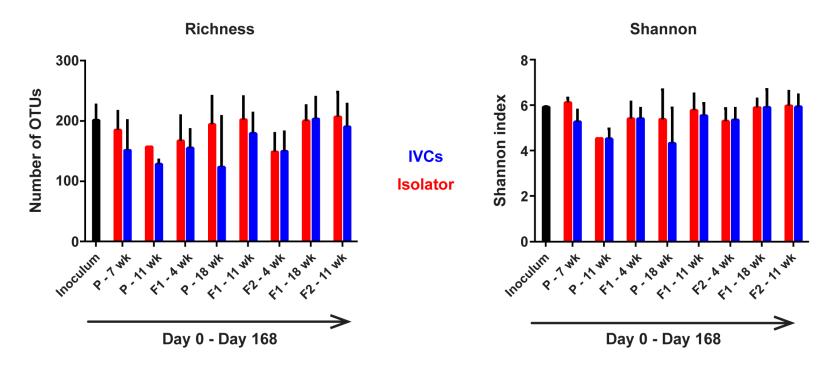
Microbiota composition of simultaneously colonized mice housed under either a gnotobiotic isolator or individually ventilated cage regime Sci Rep, Feb 2017


Randi Lundberg^{1,2}, Martin I. Bahl³, Tine R. Licht³, Martin F. Toft^{2,†} & Axel K. Hansen¹

No difference in colonization efficiency between IVCs and isolator

Highest resemblance with donor in audlt offspring

	Day of Study	Isolator	IVCs	
Inoculum	0	100%		
P - 7 wk	7	48% ± 2	51% ± 9	
P - 11 wk	38	62% ± 0	60% ± 4	
F1 - 4 wk	56	56% ± 11	55% ± 8	
P - 18 wk	84	62% ± 18	51% ± 19	
F1 - 11 wk	98	65% ± 10	63% ± 7	
F2 - 4 wk	121	49% ± 11	52% ± 8	
F1 - 18 wk	154	68% ± 6	65% ± 6	
F2 - 11 wk	168	65% ± 11	64% ± 7	



Microbiota composition of simultaneously colonized mice housed under either a gnotobiotic isolator or individually ventilated cage regime Sci Rep, Feb 2017

Randi Lundberg^{1,2}, Martin I. Bahl³, Tine R. Licht³, Martin F. Toft^{2,†} & Axel K. Hansen¹

No difference in colonization efficiency between IVCs and isolator

Microbiota composition of simultaneously colonized mice housed under either a gnotobiotic isolator or individually ventilated cage regime Sci Rep, Feb 2017

Randi Lundberg^{1,2}, Martin I. Bahl³, Tine R. Licht³, Martin F. Toft^{2,†} & Axel K. Hansen¹

IVC microbiota was not more diverse

Husbandry - water

Water treatment

- Chlorine and acid changes the gut microbiota
- Acidification (HCl) reported to increase and dicrease incidence of Type 1 diabetes in NOD mice – possibly explained by different baseline microbiotas
- Chlorination reported to affect topical formation of colonic tumours – possibly through changes in gut microbiota

pH of Drinking Water Influences the Composition of Gut Diabetes, Feb 2014 Microbiome and Type 1

Diabetes Incidence

M. Hanief Sofi, Radhika Gudi, Subha Karumuthil-Melethil, Nicolas Perez, Benjamin M. Johnson, and Chenthamarakshan Vasu^{1,2}

Consumption of Acidic Water Alters the Gut Microbiome and Decreases the Risk of Diabetes in NOD Mice

Kyle J. Wolf, Joseph G. Daft, Scott M. Tanner, Riley Hartmann, Ehsan Khafipour, and Robin G. Lorenz J Histochem Cytochem, 2014

Chlorinated Water Modulates the Development of Colorectal Tumors with Chromosomal Instability and Gut Microbiota in *Apc*-Deficient Mice

Tatsunari Sasada¹, Takao Hinoi¹*, Yasufumi Saito¹, Tomohiro Adachi¹, Yuji Takakura¹, Yasuo Kawaguchi¹, Yusuke Sotomaru², Kazuhiro Sentani³, Naohide Oue³, Wataru Yasui³, Hideki Ohdan¹ PLOS ONE, July 2015

Husbandry - diet

Diet

- Natural source vs. purified
- Composition (animal vs. vegetable sources, nutrient proportions)

Husbandry - diet

Diet

- Natural source vs. purified
- Composition (animal vs. vegetable sources, nutrient proportions)

Husbandry - diet

Diet

- Natural source vs. purified
- Composition (animal vs. vegetable sources, nutrient proportions)

+ Fish meal & porcine fat

+ Fish/meat/animal fat

Spezialdiäten GmbH
www.ssniff.de / www.ssniff.com

Free of fish/meat/animal fat

+ Fish meal

Can diet improve FMT?

Diet

- Natural source vs. purified
- Composition (animal vs. vegetable sources, nutrient proportions)

Minerals

Animal source

Customized rodent diet, animal and grain-based, low fat, high carb

Human profile

Customized rodent diet, grain-based, medium fat, medium carb

Chow

Standard rodent diet, grain-based, low fat, high carb

Macronutrient AS diet (Animal Source)			HP diet (Hum	an Profi	le)	C diet (Control)			
composition	Source	kcal%	gm%	Source	kcal%	gm%	Source	kcal%	gm%
Carbohydrates	Soy, corn, wheat	64	46.1	Soy, corn, wheat	55	48.3	Soy, corn, wheat	64	46.4
Proteins	Caseins, soy	24	19.2	Soy	20	19.1	Soy	24	19.2
Fats	Milk fat	12	4.3	Soybean oil	25	10.5	Soybean oil	12	4.3
Vitamins	Calcium carbonate, dicalcium phosphate, premixed vitamins, premixed minerals, trace elements								

Moreno-Indias, Lundberg et al. 2017 Unpublished data

Can diet improve FMT?

P generation

F1 generation

		Hum	an Microb	iota	Mou	use Microbiota			
	Inoculum		180%			100%			
ſ	P - T1	42%±16	50% ±23	37%±11	68%±7	37% ±5	37%±4		
	P - T2	48%±0	48%±4	38%±2	70%±10	63%±6	62%±4		
ĺ	F1 - T1	30%±6	37%±12	33%±3	65%±3°	55%±6	53%±7		
	F1 - T2	30% ±4	40% ±9ª	36%±4	68% ±8 ^{(d}	61%±6	65%±6		
	Diet	↑	$\backslash \uparrow /$	\uparrow	\ ↑	1	1		
	Diet	AS	HP	С	AS	HP	С		

100%
70%
50%
40%
30%

Grain-based diet w/ medium fat improved human-mouse FMT

Animal source-diet w/ low fat improved mouse-mouse FMT

Moreno-Indias, Lundberg et al. 2017 Unpublished data

Husbandry - miscellaneous

- Bedding type
- Enrichment items (nesting material, gnawing sticks, shelters etc.)
- Cage density
- Temperature and air draft
- Noise
- Timing (latest meal?)
- Caretakers
- •

If a variable can affect the microbiome → possible effect on FMT

If a variable can affect stress level → possible effect on FMT

FMT in mice – procedures

- Topical origin of transplant
- Fresh vs. frozen transplant
- Cryopreservation or not
- Anaerobic handling
- Administration (route, single vs. repeated dose)
- Recipient (health status, age)
- Housing and husbandry

May all affect FMT

Planning FMT in mice

White paper

Acknowledgments

University of Copenhagen

Axel Kornerup Hansen
Isabel Moreno-Indias
Camilla H. F. Hansen
Stine B. Metzdorff
Lukasz Krych
Helene Farlov & Mette Nelander

Technical University of Denmark
Martin Iain Bahl
Li Zhang
Bodil Madsen
Tine Rask Licht

Taconic Biosciences
Martin Fitzner Toft
Benjamin August
James Vitale
Signe Borggreen & Animal Care Team

Technical University of Denmark

